Search results for "gluon saturation"

showing 3 items of 3 documents

The one loop gluon emission light cone wave function

2017

Light cone perturbation theory has become an essential tool to calculate cross sections for various small-$x$ dilute-dense processes such as deep inelastic scattering and forward proton-proton and proton-nucleus collisions. Here we set out to do one loop calculations in an explicit helicity basis in the four dimensional helicity scheme. As a first process we calculate light cone wave function for one gluon emission to one-loop order in Hamiltonian perturbation theory on the light front. We regulate ultraviolet divergences with transverse dimensional regularization and soft divergences with using a cut-off on longitudinal momentum. We show that when all the renormalization constants are comb…

COLLISIONSParticle physicsNuclear TheoryRENORMALIZATIONQUANTUM ELECTRODYNAMICSGeneral Physics and AstronomyFOS: Physical sciencesloop calculations114 Physical sciences01 natural scienceslight cone perturbation theoryRenormalizationNuclear Theory (nucl-th)Dimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)INFINITE-MOMENTUMLight cone0103 physical sciencesSCATTERINGHelicity basis010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsCoupling constantgluon emissionta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATEDeep inelastic scatteringFRONT QCDHelicityEVOLUTIONHigh Energy Physics - PhenomenologyCHROMODYNAMICSQuantum electrodynamicsgluon saturation
researchProduct

Systematics of strong nuclear amplification of gluon saturation from exclusive vector meson production in high energy electron–nucleus collisions

2017

We show that gluon saturation gives rise to a strong modification of the scaling in both the nuclear mass number $A$ and the virtuality $Q^2$ of the vector meson production cross-section in exclusive deep-inelastic scattering off nuclei. We present qualitative analytic expressions for how the scaling exponents are modified as well as quantitative predictions that can be tested at an Electron-Ion Collider.

Nuclear and High Energy PhysicsNuclear TheoryNuclear TheoryFOS: Physical sciencesElectron01 natural sciences7. Clean energyNuclear Theory (nucl-th)Nuclear physicssystematics of strong nuclear amplificationHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesmedicineVector meson010306 general physicsNuclear ExperimentScalingMass numberPhysicsta114010308 nuclear & particles physicsScatteringDeep inelastic scatteringlcsh:QC1-999GluonHigh Energy Physics - Phenomenologymedicine.anatomical_structureHigh Energy Physics::ExperimentNucleuslcsh:Physicsgluon saturationPhysics Letters B
researchProduct

Initial conditions in AA and pA collisions

2016

A full understanding of the spacetime evolution of the QCD matter created in a heavy ion collision requires understanding the properties of the initial stages. In the weak coupling picture these are dominated by classical gluon fields, whose properties can also be studied via the scattering of dilute probes off a high energy hadron or nucleus. A particular challenge is understanding small systems, where LHC data is also showing signs of collective behavior. We discuss some recent results of on the initial matter production and thermalization in heavy ion collisions, in particular in the gluon saturation framework.

Particle physicsCollective behaviorNuclear TheoryQC1-999HadronFOS: Physical sciencesGLUON PRODUCTION114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)quantum chromodynamics0103 physical sciencesNuclear Experiment010306 general physicsPLUS PB COLLISIONSNUCLEUSQCD matterPhysicsgluon fieldsLarge Hadron Colliderta114010308 nuclear & particles physicsScatteringPhysicsCGC PREDICTIONSHigh Energy Physics::PhenomenologyTRANSVERSE-MOMENTUMCOLOR GLASS CONDENSATEFIELDSEVOLUTIONGluonheavy ion collisionHigh Energy Physics - PhenomenologyCoupling (physics)ThermalisationLHCgluon saturationEPJ Web of Conferences
researchProduct